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On the basis of dimensional  analysis ,  the ar t ic le  develops a method of generalizing data ob- 
tained when non-Newtonian media flow in channels of noncircular  c ross  section. It proposes  
a method for  the hydrodynamic calculation of these channels. 

In many technological procedures for the processing of polymers -- extrusion, shaping, pouring 
tinder pressure -- use is made of shaping instruments in the form of channels of noncircular cross sec- 
tion [i, 2]. The rules governing the flow of the polymers in these channels are complicated, owing to the 
complex geometry of the shaping elements and the non-Newtonian character of the polymer flow. It is 
quite natural, therefore, that a great deal of attention has been devoted in the literature of this subject to 
channels of relatively simple geometry -- annular, elliptical, rectangular, and triangular cross sections 
[2-5]. Nevertheless, even for these channels the theoretical calculation turns out to be rather compli- 
cated, so that it is feasible only for cases in which the liquid flowing is a Newtonian liquid or one which is 
subject to a specific rheological law. Therefore in practice, for the calculation of channels of noncircular 
cross section, use is sometimes made of nomograms constructed on the basis of an experimental investi- 
gation of the process of polymer flow in capillaries which have a ratio of cross-sectional dimensions equal 
to the ratio for the shaping instrument [6]. Miller [7] proposes a method for calculating the flow of poly- 
mers in channels with noneircular cross section which is based on introducing into the argument the varia- 
tion of the average shearing stress as a function of the average shear rate of an empirical coefficient 
which is found from the flow of a Newtonian liquid in these channels and depends on the ratio of the cross- 
sectional dimensions. We propose below a method for calculating the flow of polymers in channels of 
noncireular cross section which is based on dimensional analysis. The method requires a knowledge only 
of how the shear rate ~ varies with the shearing stress r -- that is to say, of the polymer flow curve. 

The flow of polymers was studied on an experimental apparatus described in [5], which consists of 
a constant-pressure capillary viseosimeter. The geometric dimensions and the transverse cross section 
of the capillaries are shown in Table 1, from which it can be seen that the capillary cross sections selec- 
ted for investigation are fairly complicated. The investigation was carried out on high-pressure poly- 
ethylene of brand No. 107-02-020 (MRTU 6-06-1085-69). The experiments were carried out at a temper- 
ature of 180~ 

In the investigation we also used experimental data obtained from the flow of a polystyrene melt [8], 
a 3% solution of earboxymethyl cellulose in water with 0.5% NaOH added, and an 8% solution of polyvinyl 
alcohol in water [9] in channels whose geometry is shown in Tables 2 and 3. 

The experimental data obtained for the flow of the polyethylene melt in channels of various profiles 
(see Table 1) showed that the curves of flow rate versus pressure drop, when plotted on log--log paper, 
had the same shape, which was apparently determined solely by the physical properties of the polymer 
that characterized the flow process and was independent of the channel geometry. An objective physical 
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TABLE 1. G e o m e t r y  of C a p i l l a r i e s  

No. of 
C~0ss section L, cm S, cm 2 P, cm Re, cm 

item 

,q/Z,/ 

e~j  )- 

/?2,6' ~ . _  R5,6 

10 

9,97 

10 

I0 

9,96 

10,05 

0,071 

0,68 

0,0562 

0,52 

0,380 

0,48 

0,942 

5, 12 

0,894 

3,48 

3,174 

2,81 

0,15 

0,266 

0,I26 

0.?gR 

0,2432 

0,342 

c h a r a c t e r i s t i c  of the  p o l y m e r  u n d e r  the condi t ions  of flow is the  func t ion  r (�89 The  channel  g e o m e t r y ,  on 
the  o the r  hand,  af fects  the pos i t i on  of the  f l o w - r a t e - v e r s u s - p r e s s u r e - d r o p  c u r ve  in the coo rd ina t e  p lane .  

This  conc lus ion  enab le s  us,  u s ing  d i m e n s i o n  a n a l y s i s ,  to p ropose  a method  for  g e n e r a l i z i n g  the data  on the 
flow of p o l y m e r s  in  channe l s  of n o n e i r c u l a r  c r o s s  s ec t ion .  

TABLE 2. G e o m e t r y  of C a p i l l a r i e s  

Cross section 
No. Of 
item 

(:~r i 

L, cm S, c m  2 

0,0705 

0,0686 

0,0712 

0,0707 

0,0693 

0,0697 

cm 

0,942 

1,048 

1,2t8 

t,106 

1,766 

2,25 

cm 

0,15 

0,!3t 

0,t17 

0,128 

0,0784 

0,062 
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T A B L E  3. G e o m e t r y  of  C a p i l l a r i e s  

No. of Cross section L, cm S, cm 2 P, cm R e, cm 
item 

4-.-.. 1 4 -I J '  

362 

336 

300 

344 

362 

1,935 

1,36 

1,375 

2,3 

1,81 

4,93 

5,0 

5,45 

6,6 

6,19 �9 

0,785 

0,543 

0,505 

0,697 

0,585 

We shall consider the laminar flow of a polymer under conditions of a steady-state pressure gradient 
along the length of the channel and a fully developed velocity profile, i .e. ,  without taking account of inlet 
effects. We shall also assume that there is no slippage of the polymer with respect to the walls of the 
channel. As a characteristic of the cross section of the channel, we shall take the hydraulic or equivalent 
radius Re, which is equal to the ratio of twice the area of the channel cross section, S, to the wetted peri- 
meter, P. In this case, for a circular channel the hydraulic radius coincides with the radius of the chan- 
nel. It should also be noted that the hydraulic radius so defined is widely used in hydrodynamic calculations 
for chemical engineering equipment in cases of Newtonian-liquid flow [10]. Then the pressure gradient in 
the general case for channels of arbitrary cross section with the flow of non-Newtonian liquids can be rep- 
resented as a functional relationship 

Ap _ f [q (~,), v, Re], (1) 
L 

where ~} (�89 gives the effective viscosity ~ as a function of the shear rate �89 and v is the average linear 
velocity of the polymer flow in the channel. If the above assumptions are made, the function (1) includes 
all the known parameters that affect the pressure gradient. Now, making use of dimensional analysis, 
from the function (1) we can easily obtain an equation which relates the parameters to one another in a 

unified formula: 

Ap = clq (+) v Q (2) 
- / -  = s --T 

E q u a t i o n  (2) can  be  r e w r i t t e n  in t h e  f o l l o w i n g  f o r m :  

ApRe _ cq (+) Q (3) 
2L -SRe ' 

w h e r e  e is  a q u a n t i t y  w h o s e  p h y s i c a l  s i g n i f i c a n c e  w i l l  be  d e f i n e d  b e l o w .  

As  e a n  be  s e e n  f r o m  (3), t h e  l e f t  s i d e  h a s  t h e  d i m e n s i o n s  of s h e a r i n g  s t r e s s  and r e p r e s e n t s  s o m e  

reduced shearing stress which would be present at the wall of a channel of circular cross section having a 
radius equal to the hydraulic radius of the channel of noneircular cross section. The quantity Q/SR e has 
the dimensions of shear rate and represents some reduced average shear rate �89 which would be present 
in a channel of circular cross section having a radius equal to the hydraulic radius of the channel of non- 
circular cross section. Taking account of this, we can rewrite Eq. (3) in the following form: 

T = c~1 (~) ~ v -  (4) 
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Fig. i. Reduced curves of flow rate versus pressure 

drop for a polyethylene melt at a temperature of 180~ 

(curve I), a polystyrene melt [8] at a temperature of 

190~ (II), a 3% solution of carboxymethyl cellulose in 

water [9] (III), and an 8% solution of polyvinyl alcohol 

in water [9] (IV) at a temperature of 22~ The num- 

bers next to the points correspond to the numbers of 

the capillaries in Tables 1-3. The units of log [ApR e 
/2L] are dyn/cm 2, and those of IogQ/SR e are see -I. 

F r o m  t h i s  i t  f o l l o w s  t h a t  

. . . .  (5) 
CYav V 

w h e r e  4/ i s  t h e  t r u e  s h e a r  r a t e  c o r r e s p o n d i n g  to  t h e  s h e a r i n g  s t r e s s  r .  F r o m  (5) it can  be  s e e n  tha t  t he  

q u a n t i t y  c i s  t h e  R a b i n o v i c h  c o r r e c t i o n  [2] f o r  t he  c a l c u l a t i o n  of t h e  t r u e  s h e a r  r a t e  a t  t h e  w a l l  of  a c a p i l -  
l a r y  of  c i r c u l a r  c r o s s  s e c t i o n  f r o m  t h e  known a v e r a g e  s h e a r  r a t e :  

o 

c 3 ~ d~'av (6) 
%'av tIT 

F o r  a N e w t o n i a n  l i q u i d  c = 4, and  in t h i s  c a s e  E q .  
t i on .  

(3) for a circular capillary becomes the Poiseuille equa- 

Now let us consider how the equations obtained above, (3) or (4), Can be justified for the experimen- 

tal data we obtained and those known from the literature [8, 9]. The results of this processing are shown 

in Fig. i, from which we can see the validity of the approach developed here for the flow of the various 

polymer systems in channels of various profiles. The flow data of each of the polymer systems in the 

various channels fit onto a single curve which is independent of the cross-sectional profile of the channels 

and define how the average shear rate varies with the shearing stress at the wall for a circular channel. 

The results given above enable us to draw some important conclusions. Firstly, the hydraulic rad- 

ius uniquely charscterizes the cross section of a channel of arbitrary cross section when either Newtonian 
or non-Newtonian liquids flow through it. Secondly, the shape of the flow-rate-versus-pressure-drop 
curve in channels of arbitrary cross section depends only on the flow curve of the medium, and its position 
in the plane is uniquely determined by the value of the hydraulic radius. Thus, the proposed method for 

representing data on the flow of various polymer systems in channels of arbitrary cross section is a gen- 

eral one. This enables us to propose a simple method for the hydrodynamic calculation of the p1?ocess of 
flow of non-Newtonian media in channels of noncircular cross section, based on a knowledge only of the 
flow curve of the medium and the geometric dimensions of the channel. 
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Now le t  us show how to  m a k e  u s e  of th is  m e t h o d  fo r  c a r r y i n g  out the  a p p r o p r i a t e  c a l c u l a t i o n s .  Sup- 
p o s e  tha t  we a r e  g i v e n  the  f low c u r v e  of a p o l y m e r ,  4/ = f(T), and the  g e o m e t r i c  d i m e n s i o n s  of the  channe l :  
the  c r o s s - s e c t i o n a l  a r e a  S, the  p e r i m e t e r  P,  and the  l eng th  L. We a r e  r e q u i r e d  to  f ind how the  f low r a t e  
v a r i e s  wi th  the p r e s s u r e  d r o p  when the p r e s s u r e  d r o p  i s  known. The  c a l c u l a t i o n s  a r e  c a r r i e d  out  a s  fo l lows :  

1) we d e t e r m i n e  the  h y d r a u l i c  r a d i u s  by m e a n s  of the  f o r m u l a  Re = 2 S / P ;  

2) we c a l c u l a t e  the  va lue  of the  s h e a r i n g  s t r e s s  by the  f o r m u l a  r = A P R e / 2 L ;  

3) f r o m  the  func t ion  ~ = f(r)  we d e t e r m i n e  the  t r u e  s h e a r  r a t e  ~ c o r r e s p o n d i n g  to  a g iven  T ; 

4) f r o m  the  v a l u e  we have  found fo r  4/ we c a l c u l a t e  the  a v e r a g e  v e l o c i t y  g r a d i e n t  4/av. F r o m  Eq. (5) 
it  can  be s e e n  tha t  7 a v  = 4 / /c ,  w h e r e  c, de f i ne d  by  f o r m u l a  (6), us  unknown, and to d e t e r m i n e  i t  we m u s t  
know the  funct ion  7 a v  = f(~). T h e r e f o r e  we s h a l l  c o n s i d e r  the  fo l lowing  equat ion ,  which  is equ iva l en t  to 
the  e x p r e s s i o n  7 a v  = 4//c" 

�9 1 ~" 1 
'" Tel (~) dr. (7) 7av= T3 "c'TdT= 7 j 

0 0 

H o w e v e r ,  u s i n g  (7) fo r  the  d i r e c t  c a l c u l a t i o n  of :Yav is c u m b e r s o m e ,  owing to the  d i f f i cu l ty  of s p e c i f y i n g  
the  f low c u r v e  �89 = f ( T )  in a n a l y t i c  f o r m .  We t h e r e f o r e  s u b d i v i d e  t he  f low c u r v e  into s e g m e n t s  wi th in  each  
of which  i t  can  be  a p p r o x i m a t e l y  d e s c r i b e d  by a p o w e r  funct ion .  Then  :y = kT n, w h e r e  k and n a r e  the  
cons t an t s  of the  p o w e r  func t ion .  Tak ing  accoun t  of t h i s ,  we obta in  f r o m  (7) the  equa t ion  7 a v  = ( �89 + 3). 
F r o m  th i s  we can  e a s i l y  c a l c u l a t e  the  va lue  of ~/av. M o r e o v e r ,  it  can be  s e e n  tha t  in the  l i m i t i n g  c a s e ,  
fo r  a s u f f i c i e n t l y  l a r g e  n u m b e r  of s u b d i v i s i o n s ,  we have  n = ( d l n T / d l n T ) ;  

5) f r o m  the  known q u a n t i t i e s  ~/av, S, and Re,  we f ind the  f low r a t e  Q = 4/avSR e.  Thus ,  r e p e a t i n g  
the  c a l c u l a t i o n  fo r  o t h e r  v a l u e s  of the  p r e s s u r e  d r o p  Ap, we can  ob ta in  Q as  a func t ion  of Ap.  In e x a c t l y  
the  s a m e  way,  we can  s o l v e  the  i n v e r s e  p r o b l e m :  knowing the v a l u e s  of the  f low r a t e ,  d e t e r m i n e  the  p r e s -  

s u r e  d r o p s  c o r r e s p o n d i n g  to  t h e m .  

The  a u t h o r s  wi sh  to e x p r e s s  t h e i r  g r a d i t u d e  to Go V. V inog ra dov  fo r  his  v a l u a b l e  c o m m e n t s  on the w o r k .  

T 

Re 
S 
P 
L 
Ap 

7 a v  
C 

Q 
k, n 

N O T A T I O N  

is the  s h e a r i n g  s t r e s s ;  
is  the  s h e a r  r a t e ;  
is  the  e f f e c t i v e  v i s c o s i t y ;  
is  the  h y d r a u l i c  r a d i u s ;  
is  the  c r o s s - s e c t i o n a l  a r e a  of channe l ;  
is  the  p e r i m e t e r  of c r o s s  s e c t i o n  of channel ;  
is  the  length  of channe l ;  
ts  the  p r e s s u r e  d r o p  in channe l ;  
~s the  a v e r a g e  s h e a r  r a t e ;  
~s the  R a b i n o v i c h ' s  c o r r e c t i o n ;  
ts  the  p o l y m e r  f low r a t e ;  
a r e  the  c o n s t a n t s  of the  p o w e r  func t ion .  
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