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THE FLOW OF POLYMERS IN CHANNELS OF
NONCIRCULAR CROSS SECTION
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On the basis of dimensional analysis, the article develops a method of generalizing data ob-
tained when non-Newtonian media flow in channels of noncircular cross section. It proposes
a method for the hydrodynamic calculation of these channels,

In many technological procedures for the processing of polymers — extrusion, shaping, pouring
under pressure — use is made of shaping instruments in the form of channels of noncircular cross sec~
tion [1,2]. The rules governing the flow of the polymers in these channels are complicated, owing to the
complex geometry of the shaping elements and the non-Newtonian character of the polymer flow. It is
quite natural, therefore, that a great deal of attention has been devoted in the literature of this subject to
channels of relatively simple geometry — annular, elliptical, rectangular, and triangular cross sections
[2-5]. Nevertheless, even for these channels the theoretical calculation turns out to be rather compli-
cated, so that it is feasible only for cases in which the liquid flowing is a Newtonian liquid or one which is
subject to a specific rheological law. Therefore in practice, for the calculation of channels of noncircular
cross section, use is sometimes made of nomograms constructed on the basis of an experimental investi-
gation of the process of polymer flow in capillaries which have a ratio of cross-sectional dimensions equal
to the ratio for the shaping instrument [6]. Miller [7] proposes a method for calculating the flow of poly-
mers in channels with nonecircular cross section which is based on introducing into the argument the varia-
tion of the average shearing stress as a function of the average shear rate of an empirical coefficient
which is found from the flow of a Newtonian liguid in these channels and depends on the ratio of the cross-
sectional dimensions. We propose below a method for calculating the flow of polymers in channels of
noncircular cross section which is based on dimensional analysis. The method requires a knowledge only
of how the shear rate v varies with the shearing stress r — that is to say, of the polymer flow curve.

The flow of polymers was studied on an experimental apparatus described in [5], which consists of
a constant-pressure capillary viscosimeter. The geometric dimensions and the transverse cross section
of the capillaries are shown in Table 1, from which it can be seen that the capillary cross sections selec-
ted for investigation are fairly complicated. The investigation was carried out on high-pressure poly-
ethylene of brand No. 107-02-020 (MRTU 6-06-1085-68). The experiments were carried out at a temper-
ature of 180°C.

In the investigation we also used experimental data obtained from the flow of a polystyrene melt 8],
a 3% solution of carboxymethyl cellulose in water with 0.5% NaOH added, and an 8% solution of polyvinyl
alcohol in water [9] in channels whose geometry is shown in Tables 2 and 3.

The experimental data obtained for the flow of the polyethylene melt in channels of various profiles
(see Table 1) showed that the curves of flow rate versus pressure drop, when plotted on log—log paper,
had the same shape, which was apparently determined solely by the physical properties of the polymer
that characterized the flow process and was independent of the channel geometry. An objective physical
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TABLE 1. Geometry of Capillaries

No. of Cross sectian % L. cm r S, em® ' P, cm I Re, cm
item , ‘
i 10 0,071 0,942 0,15
:
2 9,07 0,68 5,12 0,266
|
3 10 0,0562 0,894 0,126
+ 10 0,52 3,48 0,998
5 9,96 0,386 3,174 0,2432
|
5 10,05 0,48 2,81 0,342
|
| |

characteristic of the polymer under the conditions of flow is the function 7{¥)}. The channel geometry, on
the other hand, affects the position of the flow-rate-versus-pressure-drop curve in the coordinate plane.
This conclusion enables us, using dimension analysis, to propose a method for generalizing the data on the
flow of polymers in channels of noncircular cross section.

TABLE 2. Geometry of Capillaries

. of
No. o Cross section L, em S, cm® ! P, cm Re. cm
item :
Ri5
i p) 0,0705 0,942 0,15
i
o i
2 S 4+ 2 0,0686 1,048 0,131
i
242
3 2 0,0712 1,218 0,117
St 1 e .
1 N 2 0,0707 i, 106 0,128
352
5 NE——:} 2 0,0693 1,766 0,0784
1
Q) I
6 S am—— 2 0,0697 2,25 0,062
§ sk ’
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TABLE 3. Geometry of Capillaries

%\Io. of Cross section L, cm S, cm? P, cm Rey €I
item
1 R785
1 ,@‘ 362 1,935 4,93 0,785
2 1] 336 1,36 5,0 0,543
77 :

3 ‘ “- 300 1,375 5,45 0,505
S

] N
4 T(;__;__ 344 2,3 6,6 0,697

362 1,81 6,19 0,585

51
]
NN
3
>
X[

We shall consider the laminar flow of a polymer under conditions of a steady-state pressure gradient
along the length of the channel and a fully developed velocity profile, i.e., without taking account of inlet
effects. We shall also assume that there is no slippage of the polymer with respect to the walls of the
channel. As a characteristic of the cross section of the channel, we shall take the hydraulic or equivalent
radius Re, which is equal to the ratio of twice the area of the channel cross section, S, to the wetted peri-
meter, P. In this case, for a circular channel the hydraulic radius coincides with the radius of the chan-
nel. It should also be noted that the hydraulic radius so defined is widely used in hydrodynamic calculations
for chemical engineering equipment in cases of Newtonian-liquid flow [10]. Then the pressure gradient in
the general case for channels of arbitrary cross section with the flow of non-Newtonian liquids can be rep-
resented as a functional relationship

2 . v Rl ®
L .
where 1(¥) gives the effective viscosity n as a function of the shear rate ¥, and v is the average linear
velocity of the polymer flow in the channel. If the above assumptions are made, the function (1) includes
all the known parameters that affect the pressure gradient. Now, making use of dimensional analysis,
from the function (1) we can easily obtain an equation which relates the parameters to one another in a
unified formula:

Ap N < Q
— =M = =¢C —_— 2
3 M e M () S (2)
Equation (2) can be rewritten in the following form:
= , 3)
2L n (v SR, (

where ¢ is a quantity whose physical significance will be defined below.

As can be seen from (3), the left side has the dimensions of shearing stress and represents some
reduced shearing stress which would be present at the wall of a channel of circular cross section having a
radius equal to the hydraulic radius of the channel of noncircular cross section. The quantity Q/SRg has
the dimensions of shear rate and represents some reduced average shear rate ¥4, which would be present
in a channel of circular cross section having a radius equal to the hydraulic radius of the channel of non-
circular cross section. Taking account of this, we can rewrite Eq. (3) in the following form:

T =N (Y) '\;a_v' ()
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Fig. 1. Reduced curves of flow rate versus pressure
drop for a polyethylene melt at a temperature of 180°C
(curve I), a polystyrene melt {8] at a temperature of
190°C (I1), a 3% solution of carboxymethy! cellulose in
water [9] (III), and an 8% solution of polyvinyl alechol
in water [9] (IV) at a temperature of 22°C. The num-
bers next to the points correspond to the numbers of
the capillaries in Tables 1-3. The units of log [ApRe

/2L] are dyn/cm?, and those of logQ/SR, are sec™.

From this it follows that

: 1 1
Ny = —=—, {5)
CVay Y

where ¥ is the true shear rate corresponding to the shearing stress r. From (5) it can be seen that the
quantity ¢ is the Rabinovich correction [2] for the calculation of the true shear rate at the wall of a capil-
lary of circular cross section from the known average shear rate:

e o3 T diay (6)
Yoy T

For a Newtonian liquid ¢ = 4, and in this case Eq. (3) for a circular capillary becomes the Poiseuille equa-

tion.

Now let us consider how the equations obtained above, (3) or (4), can be justified for the experimen-
tal data we obtained and those known from the literature [8,9]. The results of this processing are shown
in Fig. 1, from which we can see the validity of the approach developed here for the flow of the various
polymer systems in channels of various profiles. The flow data of each of the polymer systems in the
various channels fit onto a single curve which is independent of the cross-sectional profile of the channels
and define how the average shear rate varies with the shearing stress at the wall for a circular channel.

The results given above enable us to draw some important conclusions. Firstly, the hydraulic rad-
ius uniquely characterizes the cross section of a channel of arbitrary cross section when either Newtonian
or non-Newtonian liquids flow through it. Secondly, the shape of the flow-rate-versus-pressure-drop
curve in channels of arbitrary cross section depends only on the flow curve of the medium, and its position
in the plane is uniquely determined by the value of the hydraulic radius. Thus, the proposed method for
representing data on the flow of various polymer systems in channels of arbitrary cross section is a gen-
eral one. This enables us to propose a simple method for the hydrodynamic calculation of the process of
flow of non-Newtonian media in channels of noncircular cross section, based on a knowledge only of the
flow curve of the medium and the geometric dimensions of the channel.
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Now let us show how to make use of this method for carrying out the appropriate calculations. Sup-
pose that we are given the flow curve of a polymer, ¥ = {(r), and the geometric dimensions of the channel:
the cross-sectional area S, the perimeter P, and the length L. We are required to find how the flow rate
varies with the pressure drop whenthe pressure drop is known, The calculations are carried out as follows:

1) we determine the hydraulic radius by means of the formula Re = 25/P;
2) we calculate the value of the shearing stress by the formula 7 = ApRe/2L;
3) from the function ¥ = f(r) we determine the true shear rate ¥ corresponding to a given 7;

4) from the value we have found for ¥ we calculate the average velocity gradient Y5y. From Eq. (5)
it can be seen that ¥av = ¥/c, where ¢, defined by formula (6), us unknown, and to determine it we must
know the function ¥4y = f{r). Therefore we shall consider the following equation, which is equivalent to
the expression Yoy = ¥/c:

Vav = 5 | Tvdt = — g 2f (1) dr. (7)

However, using (7) for the direct calculation of ¥4y is cumbersome, owing to the difficulty of specifying
the flow curve ¥ = f(r) in analytic form. We therefore subdivide the flow curve into segments within each
of which it can be approximately described by a power function. Then ¥ = k7™, where k and n are the
constants of the power function. Taking account of this, we obtain from (7) the equation y gy = (¥/n + 3).
From this we can easily calculate the value of ¥4y. Moreover, it can be seen that in the limiting case,
for a sufficiently large number of subdivisions, we have n = dlny/dln7);

5) from the known quantities ¥av, S, and Re, we find the flow rate Q = ¥44SRe. Thus, repeating
the calculation for other values of the pressure drop Ap, we can obtain Q as a function of Ap. In exactly
the same way, we can solve the inverse problem: knowing the values of the flow rate, determine the pres-
sure drops corresponding to them.

The authors wish to express their graditude to G, V, Vinogradov for his valuable comments on the work,

NOTATION
T is the shearing stress;
¥ is the shear rate;
7 is the effective viscosity;
Re is the hydraulic radius;
S is the cross-sectional area of channel;
P is the perimeter of cross section of channel;
L is the length of channel;
Ap is the pressure drop in channel;
Yav is the average shear rate;
c is the Rabinovich's correction;
Q is the polymer flow rate;
k, n are the constants of the power function.
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